Software Testing

David Janzen

CALPOLY

]

Verification and Validation

e Validation: 1s the system correct with
respect to some specification?

e Verification: did we build the right system?
e V&V differences don’t matter

e V&V generally refers to any activity that
attempts to ensure that the software will
function as required

CALPOLY

-
V&V Activities

e Reviews, Inspections, and Walkthroughs
 Formal verification

e Testing
— Formal and informal methods
— Dynamic (run tests)
— Levels: Unit, Integration, System, Regression

— Techniques: Functional (black-box), Structural
(white/clear-box), Stress, Usability, ...

CALPOLY

I
Testing

e A process of executing a program with the
intent of finding errors

— Deft: The dynamic verification of the behavior of
a program on a finite set of test cases, suitably
selected from the usually 1infinite executions
domain, against the expected behavior

e Objective: to find defects

e Can detect the presence of defects, but not
their absence

CALPOLY

I
Testing Glossary

e Error: mistake, bug

e Fault: result of an error, defect

e Failure: when a fault executes

e Incident: symptom associated with a failure
e Test Case: set of inputs and expected output
e Clean Tests: show something works

e Dirty Tests: show something doesn’t work

CALPOLY

I
Testing Approaches

e Functional Testing (black-box)
— Boundary Value Analysis
— Equivalence Class
— Decision Tables
— Cause and Effect

e Structural Testing (white/clear-box)
— Program graphs
— Define-use paths

— Program slicing

CALPOLY

]

Equivalence Class Testing

e Partition input/output data into mutually
disjoint sets where any number 1n the group
1s as good as another

— Little league ages (8-12)
e {(7 and lower) (8-12) (13 and higher) }

— Months for number of days calculations
e {(February)(30-day months)(31-day months)}

e Select test cases that involve values from all
partitions

CALPOLY

I
Boundary Value Analysis

e Think of a program as a function

- 1(x}, X,)
— X, and X, have some boundaries
—a<x,<b (range of legitimate values)

— c<x,=d (a,b,c,d are boundary values)

Legitimate input values

I
Boundary Value Analysis

 Premise: Bugs tend to lurk around the edges

e Single fault assumption
— Hold all variables but one constant
— Vary one to min, min+1, nominal, max-1, max

— n variables yields 4n + 1 test cases
2

oc¢

O:
O)
Q0.0 0L

-
BV A Variation

e Also test beyond boundaries

— min-1, max+1

— n variables yields 6n + 1 test cases

-
Worst-case BVA

e Reject single fault assumption

— Allow multiple variables to vary

— n variables yields 3" test cases

o
(@)

(©)

(ONO)
[OXONNOO1E
%)

& —
U

CALPOLY

J

e Identify test cases that accomplish

— Boundary Value Analysis testing (normal,
variation, and worst-case)

— Equivalence Class testing

— 100% line, branch, and condition coverage

public boolean isIsosceles(int a, int b, int ¢) {
if(a<DIl(b<sD)ll(c<1))
return false;
if (a==b)ll(a==c)ll(b==c))
return true;
else

return false;

}

CALPOLY

]

Decision Tables

e Triangle example
— Inputs: length of sides a, b, ¢

— Qutputs: type of triangle (equilateral, 1sosceles, scalene,
not a triangle, impossible)

CALPOLY

]

cl:a<b+c FIT/T|T|\T|T|T|T|T|T|T
c2:b<a+c FIT|T|T|T|T|T|T|T|T
c3:c<a+b FIT|T|T|T|T|T|T|T
c4:a=b T|T|T|T|F|F|F|F
cd:a=c T|IT\F\F|T|T|F|F
cb:b=c T\IF|T|F|T\F|T|F
al:Not a Triangle | X| X| X

a2:Scalene X
a3:Isosceles Xl [X|X
a4:Equilateral X

ad:Impossible XX X

CALPOLY

I
Path Testing

e Related to cyclomatic complexity

e Think of a module as a directed graph
where nodes are statements or conditions

e Independent basis paths

— Any path through the program that introduces
at least a new set of statements or a new
condition

e Write test cases that correspond to paths

CALPOLY

-]
Flow Graph Mappings

x=y+35;//1

o
Sequence D7) |rexiyiim

if(x>y) {//1

. i if- z=x1y; II2
Selection (1f-then) @/@\@ } y

y=2z-2;//3

e Selection (if-then-else)

ifx>y) {1
@/@\@ 1);>=yxly; I
} else {
G e T

]
y=1z-2;//4

CALPOLY

I

Flow Graph Mappings
e Selection (multiple condition if-then)
if((x>y) //1
c @ 9 6 && (y<z)) {//2
z=x/y; /3
\: ; } else { ’
z=x*y;//4
}
y=2z-2;//5
e While while(x>y) {//1
z=x/y; /2
@ ® |
y=2z-2;//3

CALPOLY

]

Program Slicing

e A form of data-flow testing

e A slice 1s the subset of a program that
relates to a particular location

e Collect only code that “touches” variables
used in computation at desired location
— Simplifies testing

— Can be done statically

CALPOLY

I
Mutation Testing

e Also known as fault seeding
e Insert faults to see if test cases catch them

e Jester 1s a Java tool to do this

CALPOLY

[
Test Adequacy

e How do we know when we are done
testing?
— We don’t
— When defect discovery rate 1s reasonably low
— When test coverage 1s reasonably high

— When defects found meets defects predicted
* Size predictors (x defects per LOC expected)
e Capture-Mark-Recapture (see next slide)
e Bayesian Belief Networks

CALPOLY

I
Capture-Mark-Recapture

 Two independent test teams
— Team A detected N, defects
— Team B detected Ny defects

— N represents defects found by both teams

e Estimate number of undiscovered defects
— (N, * Np)/ Ne — (N, + N, - No)

CALPOLY

